Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants.

نویسندگان

  • X Chen
  • A Steed
  • S Travella
  • B Keller
  • P Nicholson
چکیده

Ethylene signalling affects the resistance of dicotyledonous plant species to diverse pathogens but almost nothing is known about the role of this pathway in monocotyledonous crop species. Fusarium graminearum causes Fusarium head blight (FHB) of cereals, contaminating grain with mycotoxins such as deoxynivalenol (DON). Very little is known about the mechanisms of resistance/susceptibility to this disease. Genetic and chemical genetic studies were used to examine the influence of ethylene (ET) signalling and perception on infection of dicotyledonous (Arabidopsis) and monocotyledonous (wheat and barley) species by F. graminearum. Arabidopsis mutants with reduced ET signalling or perception were more resistant to F. graminearum than wild-type, while mutants with enhanced ET production were more susceptible. These findings were confirmed by chemical genetic studies of Arabidopsis, wheat and barley. Attenuation of expression of EIN2 in wheat, a gene encoding a core component of ethylene signalling, reduced both disease symptoms and DON contamination of grain. Fusarium graminearum appears to exploit ethylene signalling in both monocotyledonous and dicotyledonous species. This demonstration of translation from model to crop species provides a foundation for improving resistance of cereal crops to FHB through identification of allelic variation for components of the ethylene-signalling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain.

An endophytic fungal isolate (Fs-K), identified as a Fusarium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the t...

متن کامل

Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants

The APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily of transcription factors (TFs) regulates physiological, developmental and stress responses. Most of the AP2/ERF TFs belong to the ERF family in both dicotyledonous and monocotyledonous plants. ERFs are implicated in the responses to both biotic and abiotic stress and occasionally impart multiple stress tolerance. Studies have reveale...

متن کامل

Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants

The precursor messenger RNA (pre-mRNA) three-prime cleaved-off region (3'COR) and the mRNA three-prime untranslated region (3'UTR) play critical roles in regulating gene expression. The differences in base composition between these regions and the corresponding genomes are still largely uncharacterized in animals and plants. In this study, the base compositions of non-redundant 3'CORs and 3'UTR...

متن کامل

Enzymatic detoxification of Don in transgenic plants via expression of Fusarium graminearum Tri101 gene

Fusarium graminearum is causal agent of economically catastrophic disease of cereal Fusarium Head Blight (FHB) around the world. In addition to causing a loss of yield, this fungus causes serious threats to humans and animals due to the contamination of grain with the trichothecene mycotoxin. TRI101 gene, a Fusarium spp. gene, encodes an enzyme that transfers an acetyl group to the C3 hydroxyl ...

متن کامل

Resistance to Hemi-Biotrophic F. graminearum Infection Is Associated with Coordinated and Ordered Expression of Diverse Defense Signaling Pathways

Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB). We found a t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 182 4  شماره 

صفحات  -

تاریخ انتشار 2009